Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 228, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209095

RESUMO

BACKGROUND: One-carbon metabolism, which includes the folate and methionine cycles, involves the transfer of methyl groups which are then utilised as a part of multiple physiological processes including redox defence. During the methionine cycle, the vitamin B12-dependent enzyme methionine synthetase converts homocysteine to methionine. The enzyme S-adenosylmethionine (SAM) synthetase then uses methionine in the production of the reactive methyl carrier SAM. SAM-binding methyltransferases then utilise SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. RESULTS: We describe a novel SAM methyltransferase, RIPS-1, which was the single gene identified from forward genetic screens in Caenorhabditis elegans looking for resistance to lethal concentrations of the thiol-reducing agent dithiothreitol (DTT). As well as RIPS-1 mutation, we show that in wild-type worms, DTT toxicity can be overcome by modulating vitamin B12 levels, either by using growth media and/or bacterial food that provide higher levels of vitamin B12 or by vitamin B12 supplementation. We show that active methionine synthetase is required for vitamin B12-mediated DTT resistance in wild types but is not required for resistance resulting from RIPS-1 mutation and that susceptibility to DTT is partially suppressed by methionine supplementation. A targeted RNAi modifier screen identified the mitochondrial enzyme methylmalonyl-CoA epimerase as a strong genetic enhancer of DTT resistance in a RIPS-1 mutant. We show that RIPS-1 is expressed in the intestinal and hypodermal tissues of the nematode and that treating with DTT, ß-mercaptoethanol, or hydrogen sulfide induces RIPS-1 expression. We demonstrate that RIPS-1 expression is controlled by the hypoxia-inducible factor pathway and that homologues of RIPS-1 are found in a small subset of eukaryotes and bacteria, many of which can adapt to fluctuations in environmental oxygen levels. CONCLUSIONS: This work highlights the central importance of dietary vitamin B12 in normal metabolic processes in C. elegans, defines a new role for this vitamin in countering reductive stress, and identifies RIPS-1 as a novel methyltransferase in the methionine cycle.


Assuntos
Sulfeto de Hidrogênio , Ácidos Nucleicos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Carbono/metabolismo , Ditiotreitol/metabolismo , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ligases/metabolismo , Lipídeos , Mercaptoetanol/metabolismo , Metionina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Oxigênio/metabolismo , Substâncias Redutoras/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfidrila/metabolismo , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia , Vitaminas/metabolismo
2.
J Cell Sci ; 134(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34734627

RESUMO

N-linked glycosylation of proteins entering the secretory pathway is an essential modification required for protein stability and function. Previously, it has been shown that there is a temporal relationship between protein folding and glycosylation, which influences the occupancy of specific glycosylation sites. Here, we used an in vitro translation system that reproduces the initial stages of secretory protein translocation, folding and glycosylation under defined redox conditions. We found that the efficiency of glycosylation of hemopexin was dependent upon a robust NADPH-dependent cytosolic reductive pathway, which could be mimicked by the addition of a membrane-impermeable reducing agent. We identified a hypoglycosylated acceptor site that is adjacent to a cysteine involved in a short-range disulfide. We show that efficient glycosylation at this site is influenced by the cytosolic reductive pathway acting on both STT3A- and STT3B-dependent glycosylation. Our results provide further insight into the important role of the endoplasmic reticulum redox conditions in glycosylation site occupancy and demonstrate a link between redox conditions in the cytosol and glycosylation efficiency.


Assuntos
Oxirredutases , Citosol , Glicosilação
3.
Cells ; 9(9)2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872499

RESUMO

Disulphide bonds are an abundant feature of proteins across all domains of life that are important for structure, stability, and function. In eukaryotic cells, a major site of disulphide bond formation is the endoplasmic reticulum (ER). How cysteines correctly pair during polypeptide folding to form the native disulphide bond pattern is a complex problem that is not fully understood. In this paper, the evidence for different folding mechanisms involved in ER-localised disulphide bond formation is reviewed with emphasis on events that occur during ER entry. Disulphide formation in nascent polypeptides is discussed with focus on (i) its mechanistic relationship with conformational folding, (ii) evidence for its occurrence at the co-translational stage during ER entry, and (iii) the role of protein disulphide isomerase (PDI) family members. This review highlights the complex array of cellular processes that influence disulphide bond formation and identifies key questions that need to be addressed to further understand this fundamental process.


Assuntos
Dissulfetos/química , Peptídeos/química , Sistemas de Translocação de Proteínas/metabolismo , Via Secretória/fisiologia , Humanos , Dobramento de Proteína
4.
Antioxid Redox Signal ; 33(10): 665-678, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32517586

RESUMO

Aims: The post-translational oxidation of methionine to methionine sulfoxide (MetSO) is a reversible process, enabling the repair of oxidative damage to proteins and the use of sulfoxidation as a regulatory switch. MetSO reductases catalyze the stereospecific reduction of MetSO. One of the mammalian MetSO reductases, MsrB3, has a signal sequence for entry into the endoplasmic reticulum (ER). In the ER, MsrB3 is expected to encounter a distinct redox environment compared with its paralogs in the cytosol, nucleus, and mitochondria. We sought to determine the location and arrangement of MsrB3 redox-active cysteines, which may couple MsrB3 activity to other redox events in the ER. Results: We determined the human MsrB3 structure by using X-ray crystallography. The structure revealed that a disulfide bond near the protein amino terminus is distant in space from the active site. Nevertheless, biochemical assays showed that these amino-terminal cysteines are oxidized by the MsrB3 active site after its reaction with MetSO. Innovation: This study reveals a mechanism to shuttle oxidizing equivalents from the primary MsrB3 active site toward the enzyme surface, where they would be available for further dithiol-disulfide exchange reactions. Conclusion: Conformational changes must occur during the MsrB3 catalytic cycle to transfer oxidizing equivalents from the active site to the amino-terminal redox-active disulfide. The accessibility of this exposed disulfide may help couple MsrB3 activity to other dithiol-disulfide redox events in the secretory pathway.


Assuntos
Transporte de Elétrons , Metionina Sulfóxido Redutases/química , Metionina Sulfóxido Redutases/metabolismo , Modelos Moleculares , Conformação Proteica , Transdução de Sinais , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Mitocôndrias/metabolismo , Oxirredução , Fosforilação Oxidativa , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
5.
J Cell Sci ; 133(8)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32184267

RESUMO

Folding of proteins entering the mammalian secretory pathway requires the insertion of the correct disulfides. Disulfide formation involves both an oxidative pathway for their insertion and a reductive pathway to remove incorrectly formed disulfides. Reduction of these disulfides is crucial for correct folding and degradation of misfolded proteins. Previously, we showed that the reductive pathway is driven by NADPH generated in the cytosol. Here, by reconstituting the pathway using purified proteins and ER microsomal membranes, we demonstrate that the thioredoxin reductase system provides the minimal cytosolic components required for reducing proteins within the ER lumen. In particular, saturation of the pathway and its protease sensitivity demonstrates the requirement for a membrane protein to shuttle electrons from the cytosol to the ER. These results provide compelling evidence for the crucial role of the cytosol in regulating ER redox homeostasis, ensuring correct protein folding and facilitating the degradation of misfolded ER proteins.


Assuntos
Proteínas de Membrana , Tiorredoxina Dissulfeto Redutase , Animais , Citosol , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredução , Dobramento de Proteína , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
6.
J Biol Chem ; 295(8): 2438-2448, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31953323

RESUMO

How and when disulfide bonds form in proteins relative to the stage of their folding is a fundamental question in cell biology. Two models describe this relationship: the folded precursor model, in which a nascent structure forms before disulfides do, and the quasi-stochastic model, where disulfides form prior to folding. Here we investigated oxidative folding of three structurally diverse substrates, ß2-microglobulin, prolactin, and the disintegrin domain of ADAM metallopeptidase domain 10 (ADAM10), to understand how these mechanisms apply in a cellular context. We used a eukaryotic cell-free translation system in which we could identify disulfide isomers in stalled translation intermediates to characterize the timing of disulfide formation relative to translocation into the endoplasmic reticulum and the presence of non-native disulfides. Our results indicate that in a domain lacking secondary structure, disulfides form before conformational folding through a process prone to nonnative disulfide formation, whereas in proteins with defined secondary structure, native disulfide formation occurs after partial folding. These findings reveal that the nascent protein structure promotes correct disulfide formation during cotranslational folding.


Assuntos
Proteína ADAM10/química , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Dissulfetos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Prolactina/química , Prolactina/metabolismo , Dobramento de Proteína , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo , Animais , Bovinos , Cisteína/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Ribossomos/metabolismo , Processos Estocásticos , Fatores de Tempo
7.
EMBO J ; 38(15): e100990, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368601

RESUMO

Activation of the ATF6α signaling pathway is initiated by trafficking of ATF6α from the ER to the Golgi apparatus. Its subsequent proteolysis releases a transcription factor that translocates to the nucleus causing downstream gene activation. How ER retention, Golgi trafficking, and proteolysis of ATF6α are regulated and whether additional protein partners are required for its localization and processing remain unresolved. Here, we show that ER-resident oxidoreductase ERp18 associates with ATF6α following ER stress and plays a key role in both trafficking and activation of ATF6α. We find that ERp18 depletion attenuates the ATF6α stress response. Paradoxically, ER stress accelerates trafficking of ATF6α to the Golgi in ERp18-depleted cells. However, the translocated ATF6α becomes aberrantly processed preventing release of the soluble transcription factor. Hence, we demonstrate that ERp18 monitors ATF6α ER quality control to ensure optimal processing following trafficking to the Golgi.


Assuntos
Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Ativação Transcricional , Linhagem Celular , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Deleção de Genes , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Transdução de Sinais , Resposta a Proteínas não Dobradas
8.
Biochem J ; 475(4): 827-838, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29420254

RESUMO

The oxidation of methionine residues in proteins occurs during oxidative stress and can lead to an alteration in protein function. The enzyme methionine sulfoxide reductase (Msr) reverses this modification. Here, we characterise the mammalian enzyme Msr B3. There are two splice variants of this enzyme that differ only in their N-terminal signal sequence, which directs the protein to either the endoplasmic reticulum (ER) or mitochondria. We demonstrate here that the enzyme can complement a bacterial strain, which is dependent on methionine sulfoxide reduction for growth, that the purified recombinant protein is enzymatically active showing stereospecificity towards R-methionine sulfoxide, and identify the active site and two resolving cysteine residues. The enzyme is efficiently recycled by thioredoxin only in the presence of both resolving cysteine residues. These results show that for this isoform of Msrs, the reduction cycle most likely proceeds through a three-step process. This involves an initial sulfenylation of the active site thiol followed by the formation of an intrachain disulfide with a resolving thiol group and completed by the reduction of this disulfide by a thioredoxin-like protein to regenerate the active site thiol. Interestingly, the enzyme can also act as an oxidase catalysing the stereospecific formation of R-methionine sulfoxide. This result has important implications for the role of this enzyme in the reversible modification of ER and mitochondrial proteins.


Assuntos
Metionina Sulfóxido Redutases/genética , Estresse Oxidativo/genética , Oxigenases/genética , Proteínas Recombinantes/genética , Catálise , Domínio Catalítico , Cisteína/química , Dissulfetos/química , Dissulfetos/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Metionina Sulfóxido Redutases/química , Mitocôndrias/genética , Oxirredução , Oxigenases/química , Transporte Proteico/genética , Proteínas Recombinantes/química , Tiorredoxinas/química , Tiorredoxinas/metabolismo
9.
Trends Biochem Sci ; 43(1): 32-43, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29153511

RESUMO

The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas/química , Proteínas/metabolismo , Humanos , Oxirredução , Dobramento de Proteína
10.
Wellcome Open Res ; 2: 36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062910

RESUMO

Background: The mammalian endoplasmic reticulum (ER) continuously adapts to the cellular secretory load by the activation of an unfolded protein response (UPR).  This stress response results in expansion of the ER, upregulation of proteins involved in protein folding and degradation, and attenuation of protein synthesis.  The response is orchestrated by three signalling pathways each activated by a specific signal transducer, either inositol requiring enzyme α (IRE1α), double-stranded RNA-activated protein kinase-like ER kinase (PERK) or activating transcription factor 6 (ATF6).  Activation of IRE1α results in its oligomerisation, autophosphorylation and stimulation of its ribonuclease activity.  The ribonuclease initiates the splicing of an intron from mRNA encoding the transcription factor, X-box binding protein 1 (XBP1), as well as degradation of specific mRNAs and microRNAs. Methods: To investigate the consequence of expression of exogenous XBP1, we generated a stable cell-line expressing spliced XBP1 mRNA under the control of an inducible promotor. Results: Following induction of expression, high levels of XBP1 protein were detected, which allowed upregulation of target genes in the absence of induction of the UPR.  Remarkably under stress conditions, the expression of exogenous XBP1 repressed splicing of endogenous XBP1 mRNA without repressing the activation of PERK. Conclusions: These results illustrate that a feedback mechanism exists to attenuate Ire1α ribonuclease activity in the presence of XBP1.

11.
Biochem J ; 474(18): 3179-3188, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28784690

RESUMO

Rodent monoclonal antibodies with specificity towards important biological targets are developed for therapeutic use by a process of humanisation. This process involves the creation of molecules, which retain the specificity of the rodent antibody but contain predominantly human coding sequence. Here, we show that some humanised heavy chains (HCs) can fold, form dimers and be secreted even in the absence of a light chain (LC). Quality control of recombinant antibody assembly in vivo is thought to rely upon folding of the HC CH1 domain. This domain acts as a switch for secretion, only folding upon interaction with the LC CL domain. We show that the secreted heavy-chain dimers contain folded CH1 domains and contribute to the heterogeneity of antibody species secreted during the expression of therapeutic antibodies. This subversion of the normal quality control process is dependent on the HC variable domain, is prevalent with engineered antibodies and can occur when only the Fab fragments are expressed. This discovery will have an impact on the efficient production of both humanised antibodies and the design of novel antibody formats.


Assuntos
Anticorpos Monoclonais/biossíntese , Imunoglobulina G/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Formação de Anticorpos , Especificidade de Anticorpos , Células CHO , Cricetulus , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Leves de Imunoglobulina/química , Dobramento de Proteína , Proteínas Recombinantes/química
12.
J Biol Chem ; 292(17): 6978-6986, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28298446

RESUMO

The relationship between protein synthesis, folding, and disulfide formation within the endoplasmic reticulum (ER) is poorly understood. Previous studies have suggested that pre-existing disulfide links are absolutely required to allow protein folding and, conversely, that protein folding occurs prior to disulfide formation. To address the question of what happens first within the ER, that is, protein folding or disulfide formation, we studied folding events at the early stages of polypeptide chain translocation into the mammalian ER using stalled translation intermediates. Our results demonstrate that polypeptide folding can occur without complete domain translocation. Protein disulfide isomerase (PDI) interacts with these early intermediates, but disulfide formation does not occur unless the entire sequence of the protein domain is translocated. This is the first evidence that folding of the polypeptide chain precedes disulfide formation within a cellular context and highlights key differences between protein folding in the ER and refolding of purified proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Dobramento de Proteína , Animais , Linhagem Celular Tumoral , Sistema Livre de Células , Códon , Biologia Computacional , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Dissulfetos/química , Cães , Glicosilação , Humanos , Pâncreas/metabolismo , Peptídeos/química , Desnaturação Proteica , Domínios Proteicos , Transporte Proteico , Microglobulina beta-2/química
13.
EMBO J ; 36(5): 693-702, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093500

RESUMO

Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so-called non-native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non-native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non-native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non-native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway.


Assuntos
Dissulfetos/metabolismo , Retículo Endoplasmático/enzimologia , Tiorredoxina Redutase 1/metabolismo , Linhagem Celular , Humanos , NADP/metabolismo
14.
Biochem J ; 473(7): 851-8, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26772871

RESUMO

The membrane topology of vitamin K epoxide reductase (VKOR) is controversial with data supporting both a three transmembrane and a four transmembrane model. The positioning of the transmembrane domains and the loops between these domains is critical if we are to understand the mechanism of vitamin K oxidation and its recycling by members of the thioredoxin family of proteins and the mechanism of action of warfarin, an inhibitor of VKOR. Here we show that both mammalian VKOR isoforms adopt the same topology, with the large loop between transmembrane one and two facing the lumen of the endoplasmic reticulum (ER). We used a redox sensitive green fluorescent protein (GFP) fused to the N- or C-terminus to show that these regions face the cytosol, and introduction of glycosylation sites along with mixed disulfide formation with thioredoxin-like transmembrane protein (TMX) to demonstrate ER localization of the major loop. The topology is identical with the bacterial homologue from Synechococcussp., for which the structure and mechanism of recycling has been characterized. Our results provide a resolution to the membrane topology controversy and support previous results suggesting a role for members of the ER protein disulfide isomerase (PDI) family in recycling VKOR.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/química , Synechococcus/química , Vitamina K Epóxido Redutases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
15.
Biochem J ; 469(2): 279-88, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25989104

RESUMO

The formation of disulfides in proteins entering the secretory pathway is catalysed by the protein disulfide isomerase (PDI) family of enzymes. These enzymes catalyse the introduction, reduction and isomerization of disulfides. To function continuously they require an oxidase to reform the disulfide at their active site. To determine how each family member can be recycled to catalyse disulfide exchange, we have studied whether disulfides are transferred between individual PDI family members. We studied disulfide exchange either between purified proteins or by identifying mixed disulfide formation within cells grown in culture. We show that disulfide exchange occurs efficiently and reversibly between specific PDIs. These results have allowed us to define a hierarchy for members of the PDI family, in terms of ability to act as electron acceptors or donors during thiol-disulfide exchange reactions and indicate that there is no kinetic barrier to the exchange of disulfides between several PDI proteins. Such promiscuous disulfide exchange negates the necessity for each enzyme to be oxidized by Ero1 (ER oxidoreductin 1) or reduced by a reductive system. The lack of kinetic separation of the oxidative and reductive pathways in mammalian cells contrasts sharply with the equivalent systems for native disulfide formation within the bacterial periplasm.


Assuntos
Dissulfetos/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Linhagem Celular , Dissulfetos/química , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética
16.
Biophys Rep ; 1: 14-17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26942215

RESUMO

The activity of typical 2-cys peroxiredoxin (Prxs) can be regulated by hyperoxidation with a consequent loss of redox activity. Here we developed a simple assay to monitor the level of hyperoxidation of different typical 2-cys prxs simultaneously. This assay only requires standard equipment and can compare different samples on the same gel. It requires much less time than conventional 2D gels and gives more information than Western blotting with an antibody specific for hyperoxidized peroxiredoxin. This method could also be used to monitor protein modification with a charge difference such as phosphorylation.

17.
Biochem Soc Trans ; 42(4): 905-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25109977

RESUMO

The efficient folding, assembly and secretion of proteins from mammalian cells is a critically important process for normal cell physiology. Breakdown of the ability of cells to secrete functional proteins leads to disease pathologies caused by a lack of protein function or by cell death resulting from an aggravated stress response. Central to the folding of secreted proteins is the formation of disulfides which both aid folding and provide stability to the protein structure. For disulfides to form correctly necessitates the appropriate redox environment within the endoplasmic reticulum: too reducing and disulfides will not form, too oxidizing and non-native disulfides will not be resolved. How the endoplasmic reticulum maintains the correct redox balance is unknown. Although we have a good appreciation of the processes leading to a more oxidizing environment, our understanding of how any counterbalancing reductive pathway operates is limited. The present review looks at potential mechanisms for introducing reducing equivalents into the endoplasmic reticulum and discusses an approach to test these hypotheses.


Assuntos
Retículo Endoplasmático/metabolismo , Animais , Humanos , Oxirredução , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo
18.
Biochem J ; 461(1): 107-13, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24758166

RESUMO

Disulfide formation within the endoplasmic reticulum is a complex process requiring a disulfide exchange protein such as PDI (protein disulfide-isomerase) and a mechanism to form disulfides de novo. In mammalian cells, the major pathway for de novo disulfide formation involves the enzyme Ero1α (endoplasmic reticulum oxidase 1α) which couples oxidation of thiols to the reduction of molecular oxygen to form hydrogen peroxide (H2O2). Ero1α activity is tightly regulated by a mechanism that requires the formation of regulatory disulfides. These regulatory disulfides are reduced to activate and reform to inactivate the enzyme. To investigate the mechanism of inactivation we analysed regulatory disulfide formation in the presence of various oxidants under controlled oxygen concentration. Neither molecular oxygen nor H2O2 was able to oxidize Ero1α efficiently to form the correct regulatory disulfides. However, specific members of the PDI family, such as PDI or ERp46 (endoplasmic reticulum-resident protein 46), were able to catalyse this process. Further studies showed that both active sites of PDI contribute to the formation of regulatory disulfides in Ero1α and that the PDI substrate-binding domain is crucial to allow electron transfer between the two enzymes. The results of the present study demonstrate a simple feedback mechanism of re-gulation of mammalian Ero1α involving its primary substrate.


Assuntos
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/fisiologia , Catálise , Ativação Enzimática/fisiologia , Humanos , Isomerases de Dissulfetos de Proteínas/metabolismo , Especificidade por Substrato/fisiologia
19.
Biochem Soc Trans ; 42(1): 42-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24450625

RESUMO

Hydrogen peroxide (H2O2) can act as a signalling molecule affecting the cell cycle as well as contributing towards the oxidative stress response. The primary target of this molecule is oxidation-sensitive cysteine residues in proteins such as protein tyrosine phosphatases. The cell has robust mechanisms to remove H2O2 that need to be regulated for H2O2 to react with and modify protein thiols. In particular, the family of peroxiredoxins are capable of the rapid removal of even trace amounts of this molecule. It has been suggested that the inactivation of peroxiredoxins by hyperoxidation may allow H2O2 levels to increase in cells and thereby modify critical thiol groups in proteins. We have been studying how the H2O2 produced during disulfide formation in the ER (endoplasmic reticulum) is metabolized and have shown that ER-resident peroxiredoxin IV not only can remove H2O2, but also contributes to de novo disulfide formation. In the present article, we review recent data on the structure and function of this enzyme as well as its sensitivity to hyperoxidation.


Assuntos
Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/fisiologia , Animais , Domínio Catalítico , Retículo Endoplasmático/enzimologia , Humanos , Peróxido de Hidrogênio/química , Oxirredução , Peroxirredoxinas/química , Estrutura Secundária de Proteína
20.
J Biol Chem ; 289(9): 5490-8, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24403061

RESUMO

Typical 2-Cys peroxiredoxins are required to remove hydrogen peroxide from several different cellular compartments. Their activity can be regulated by hyperoxidation and consequent inactivation of the active-site peroxidatic cysteine. Here we developed a simple assay to quantify the hyperoxidation of peroxiredoxins. Hyperoxidation of peroxiredoxins can only occur efficiently in the presence of a recycling system, usually involving thioredoxin and thioredoxin reductase. We demonstrate that there is a marked difference in the sensitivity of the endoplasmic reticulum-localized peroxiredoxin to hyperoxidation compared with either the cytosolic or mitochondrial enzymes. Each enzyme is equally sensitive to hyperoxidation in the presence of a robust recycling system. Our results demonstrate that peroxiredoxin IV recycling in the endoplasmic reticulum is much less efficient than in the cytosol or mitochondria, leading to the protection of peroxiredoxin IV from hyperoxidation.


Assuntos
Retículo Endoplasmático/enzimologia , Peroxirredoxinas/metabolismo , Linhagem Celular , Citosol/enzimologia , Retículo Endoplasmático/genética , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Oxirredução , Peroxirredoxinas/genética , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...